skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Camacho-López, Marco A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the effect of sodium ions (Na+) on the nucleation process and phase selectivity for the formation of hexagonal molybdenum trioxide crystals (h-MoO3). The phase selectivity during the reaction is attributed to the interaction of Na+ with the molecules in our precursor solution formed by metallic molybdenum dissolved in a mix of hydrochloric and nitric acids. The vibrational characteristics of the precursor solutions were studied by Raman spectroscopy in combination with density functional theory modeling, showing the presence of [MoO2Cl3(H2O)] ions within the solutions. The symmetric stretching vibration of the Mo-O bonds found at 962 cm-1 in [MoO2Cl3(H2O)]- proved that the addition of Na+ (in the form of dissolved NaCl) to the precursor solutions resulted only in an electrostatic interaction with the aquo (H2O) and chloro (Cl-) ligands in the complex. After heating the precursor solutions, X-ray diffraction, Raman spectroscopy, and scanning electron microscopy of the obtained powders showed that adding NaCl contributed to the phase selectivity of the reaction, with the Na+ ions playing a vital role in the formation of h-MoO3 over other crystalline phases. Based on the nature of the molybdenum complexes found in the precursor solutions and the structural characteristics of the powders, a formation mechanism to obtain h-MoO3 is proposed. Additionally, the phase stability of the h-MoO3 crystals was studied by calorimetry techniques showing that h-MoO3 transforms to a-MoO3 at ~649 K. These results provide important insights into phase control to selectively form hexagonal MoO3. 
    more » « less